Bachelor of Science in Engineering in Mechatronics 4-year curriculum
BSc(Engineering)(Mechatronics)[EB011EEE05]

Associate Professor and Programme Convener:
F Nicolls, MSc(Eng) PhD Cape Town

Mechatronics is an interdisciplinary branch of engineering which combines a fundamental background in mechanical engineering with light-current electrical engineering. Many universities and other institutions worldwide are now offering courses or degrees in Mechatronics, and it is increasingly recognised that this combination of mechanical and electrical engineering studies equips graduates with an excellent basis upon which to build valuable engineering roles in modern industry.

Apart from receiving a thorough grounding in both electrical and mechanical engineering, the Mechatronics student at UCT will gain a foundation in physical science, advanced engineering mathematics, electro-mechanical control theory, microcomputer technology, systematic engineering design and some principles of engineering management. In addition, the Mechatronics Programme offers final-year optional courses in related fields, such as bio-medical engineering.

The Mechatronics engineer in industry may require expertise across a broad range of engineering disciplines, and will be especially well-suited to a career in light manufacturing or process control. Mechatronics engineers may become involved in fields such as instrumentation, automation, robotics, bio-medical engineering or machine vision. The Mechatronics Programme at UCT aims to equip its graduates with a solid and broad-based engineering education, including the skills in design and the knowledge of computers and other digital systems hardware, that will be necessary for a successful future career in any of these environments. The Mechatronics programme is administered as a distinct programme within the Department of Electrical Engineering, and student advice specific to the needs of Mechatronics undergraduates is available to students on the programme.

A candidate shall complete approved courses of a value not less than 576 credits and shall comply with the prescribed curriculum requirements.

First Year Core Courses (ME)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC1015F</td>
<td>Computer Science 1015</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>EEE1006F</td>
<td>Introduction to Electronic Engineering</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>MAM1020F</td>
<td>Mathematics IA for Engineers</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>MEC1003F</td>
<td>Engineering Drawing</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>PHY1012F</td>
<td>Physics A for Engineers</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>AXL1200B</td>
<td>Culture, Identity & Globalisation in Africa</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>CSC1016S</td>
<td>Computer Science 1016</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>EEE1007S</td>
<td>Introduction to Electrical Engineering</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>MAM1021S</td>
<td>Mathematics IB for Engineers</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>PHY1013S</td>
<td>Physics B for Engineers</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>EEE1000X</td>
<td>Practical Training</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Total credits per year: 148
Second Year Core Courses (ME)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE2045F</td>
<td>Analogue Electronics</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>EEE2046F</td>
<td>Embedded Systems I</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>EEE2048F</td>
<td>Professional Communication for Electrical Engineering</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>MAM2083F</td>
<td>Vector Calculus for Engineers</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>MEC1009F</td>
<td>Introduction to Engineering Mechanics</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>EEE2044S</td>
<td>Introduction to Power Engineering</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>EEE2047S</td>
<td>Signals and Systems I</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>MAM2084S</td>
<td>Linear Algebra and DEs for Engineers</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>MEC2026S</td>
<td>Project Management</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>PHY2010S</td>
<td>Electromagnetism for Engineers</td>
<td>16</td>
<td>6</td>
</tr>
</tbody>
</table>

Total credits per year: 144

Third Year Core Courses (ME)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE3088F</td>
<td>Electrical Engineering Design Principles</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>EEE3090F</td>
<td>Electronic Devices and Circuits</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>EEE3091F</td>
<td>Energy Conversion</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>EEE3092F</td>
<td>Signals & Systems II</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>MEC2023F</td>
<td>Dynamics I</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>EEE3094S</td>
<td>Control Systems Engineering</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>EEE3096S</td>
<td>Embedded Systems II</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>EEE3099S</td>
<td>Engineering Design: Mechatronics</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>MEC2045S</td>
<td>Applied Engineering Mechanics</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>EEE3000X</td>
<td>Practical Training</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

Approved Complementary Studies Elective F/S: 16

Total credits per year: 144

Fourth Year Core Courses (ME)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE4113F</td>
<td>Engineering System Design</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>EEE4093F</td>
<td>Process Control & Instrumentation</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>EEE4099F</td>
<td>Electrical Machines & Power Electronics</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>CML4607Z</td>
<td>Law for Engineers</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>EEE4006C</td>
<td>Professional Communication Studies</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>EEE4051C</td>
<td>New Venture Planning</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>MEC4063C</td>
<td>Industrial Ecology</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>EEE4022S</td>
<td>Final Year Project</td>
<td>40</td>
<td>8</td>
</tr>
</tbody>
</table>

Fourth Year Elective Core Courses (ME)

Choose courses amounting to at least 16 credits from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE4114F</td>
<td>Digital Signal Processing</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>EEE4086F</td>
<td>Microwave Engineering</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>EEE4089F</td>
<td>Power Distribution & Transmission Networks</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>EEE4090F</td>
<td>Power Systems Analysis Operation and Control</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>EEE4104C</td>
<td>Electrical Machines & Drives</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>EEE4105C</td>
<td>RF & Microwave Devices & Circuits</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

Total credits per year (minimum): 144

The following courses may also be of interest, timetable permitting, and require approval:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>END1019L</td>
<td>Social Infrastructures: Engaging with community for change</td>
<td>18</td>
<td>5</td>
</tr>
</tbody>
</table>
Course descriptions are set out in the section on Departments in the Faculty and Courses Offered. The course code abbreviation for Electrical Engineering is EEE.

Bachelor of Science in Engineering in Mechatronics 5-year curriculum

BSc(Engineering)(Mechatronics)(EB811EEE05)

Associate Professor and Programme Convener:
F Nicolls, MSc(Eng) PhD Cape Town

Students on the 5-year curriculum take the same courses and credits as in the 4-year curriculum, but the courses are spaced out over 5 years to allow more time for learning new concepts, grappling with assignments, asking questions, and obtaining feedback. The 5-year curriculum is supported by ASPECT to ensure student success.

All students are admitted into the 4-year curriculum, and there are two opportunities in the first year to change to the 5-year curriculum and receive additional support from ASPECT. The first opportunity is after the initial set of class tests in the first term. The second opportunity is after the first semester’s final examinations.

There are no additional tuition fees or charges for changing to the 5-year curriculum. Changing at the end of the first term is preferable as this enables students to switch before any courses are failed. Courses that are failed must be repeated and will be charged for.

A candidate shall complete approved courses of a value not less than 576 credits and shall comply with the prescribed curriculum requirements.

First Year Core Courses (ME)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE1006F</td>
<td>Introduction to Electronic Engineering</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>MAM1023F</td>
<td>Mathematics IA for Engineers Extended</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>PHY1014F</td>
<td>Physics A for Aspect</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>EEE1007S</td>
<td>Introduction to Electrical Engineering</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>MAM1024S</td>
<td>Mathematics IB for Engineers Extended</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>PHY1015S</td>
<td>Physics B for Aspect</td>
<td>18</td>
<td>5</td>
</tr>
</tbody>
</table>

Total credits per year: **96**

Second Year Core Courses (ME)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC1015F</td>
<td>Computer Science 1015</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>EEE2045F</td>
<td>Analogue Electronics</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>MAM2085F</td>
<td>Vector Calculus for Aspect</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>MEC1003F</td>
<td>Engineering Drawing</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>CSC1016S</td>
<td>Computer Science 1016</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>EEE2047S</td>
<td>Signals and Systems I</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>MAM2084S</td>
<td>Linear Algebra and DEs for Engineers</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>MEC2026S</td>
<td>Project Management</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>EEE1000X</td>
<td>Practical Training</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Total credits per year: **116**
Third Year Core Courses (ME)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE2046F</td>
<td>Embedded Systems I</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>EEE2048F</td>
<td>Professional Communication for Electrical Engineering</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>EEE3090F</td>
<td>Electronic Devices and Circuits</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>MEC1009F</td>
<td>Introduction to Engineering Mechanics</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>AXL1200S</td>
<td>Culture, Identity & Globalisation in Africa</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>EEE2044S</td>
<td>Introduction to Power Engineering</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>EEE3094S</td>
<td>Control Systems Engineering</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>PHY2010S</td>
<td>Electromagnetism for Engineers</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total credits per year</td>
<td>112</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year Core Courses (ME)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE3088F</td>
<td>Electrical Engineering Design Principles</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>EEE3091F</td>
<td>Energy Conversion</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>EEE3092F</td>
<td>Signals & Systems II</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>MEC2023F</td>
<td>Dynamics I</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>CMH4607Z</td>
<td>Law for Engineers</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>EEE3096S</td>
<td>Embedded Systems II</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>EEE3099S</td>
<td>Engineering Design: Mechatronics</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>MEC2045S</td>
<td>Applied Engineering Mechanics</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>EEE3000X</td>
<td>Practical Training</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Approved Complementary Studies Elective F/S</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total credits per year</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

Fifth Year Core Courses (ME)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE4113F</td>
<td>Engineering System Design</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>EEE4093F</td>
<td>Process Control & Instrumentation</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>EEE4099F</td>
<td>Electrical Machines & Power Electronics</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>EEE406FC</td>
<td>Professional Communication Studies</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>EEE4051C</td>
<td>New Venture Planning</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>MEC4063C</td>
<td>Industrial Ecology</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>EEE4022S</td>
<td>Final Year Project</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Total credits per year (minimum)</td>
<td>136</td>
<td></td>
</tr>
</tbody>
</table>

Fifth Year Elective Core Courses (ME)

Choose courses amounting to at least 16 credits from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE4114F</td>
<td>Digital Signal Processing</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>EEE4086F</td>
<td>Microwave Engineering</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>EEE4089F</td>
<td>Power Distribution & Transmission Networks</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>EEE4090F</td>
<td>Power Systems Analysis Operation and Control</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>EEE4104C</td>
<td>Electrical Machines & Drives</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>EEE4105C</td>
<td>RF & Microwave Devices & Circuits</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Total credits per year (minimum)</td>
<td>136</td>
<td></td>
</tr>
</tbody>
</table>

The following courses may also be of interest, timetable permitting, and require approval:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>END1019L</td>
<td>Social Infrastructures: Engaging with community for change</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>HUB4045F</td>
<td>Introduction to Medical Imaging & Image Processing</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>
ELECTRICAL ENGINEERING

The Department offers the following Undergraduate Degree programmes:

Bachelor of Science in Engineering in:
Electrical Engineering
Electrical and Computer Engineering
Mechatronics

The Department of Electrical Engineering is located on the 4th floor of the Menzies Building, Library Road, Upper Campus, Rondebosch.

Website: www.ee.uct.ac.za
Email address: eleceng@uct.ac.za
Telephone no.: 021 650 2811

Staff

Professor and Head of Department
ES Boje, PrEng BSc(Eng) Witwatersrand MSc(Eng) PhD Natal FSAAE SMSAIMC MIEEE

Professors
A Baghai-Wadji, MSc(Eng) PhD DSc Vienna FEMA SMIEE
P Barendse, MSc(Eng) PhD Cape Town MIEE
KA Folly, MSc(Eng) Beijing PhD Hiroshima MIEE SMIEEE
MA Khan, MSc(Eng) PhD Cape Town SMIEEE
P Martinez, BScHons(Mat Eng) MSc PhD Cape Town IAA, IISL, FRAS, MSAIP

Emeritus Professors
M Braae, MSc(Eng) Cape Town PhD UMIST MIEEE
BJ Downing, MSc Bradford PhD Sheffield
G de Jager, MSc Rhodes PhD Manchester MBL S4 MIEEE
CT Gaunt, BSc(Eng) Natal MBL SA PhD Cape Town FIET FSAIEE
MR Ings, BSc(Hons) Rhodes PhD London SMIEEE
A Petroianu, Dipl Ing USSR Dr Ing Bucharest IEEE VDE CIGRÉ
KM Reineck, CEng Dip Eng Cologne DipEIEng Dunelm PhD Newcastle VDE FIET

Honorary Professor
P Pillay, CEng BSc(Eng) UD W MSc(Eng) Natal PhD Virginia Tech FIET FIEEE

Adjunct Professor
PJ Cilliers, PrEng BEng (Hons) Pret MS George Washington PhD Ohio SAIP

Associate Professors
S Chowdhury, BEE(Hons) PhD (Eng) Kolkata MIET SMIEEE MIE SMSAIIEEE
ME Dlodlo, Reg Eng, BSEE BS Geneva MSc Kansas State PhD Delft FZweIF IEEE
OE Falowo, BEng MEEng Akure PhD Cape Town SMIEEE
RH Geschke, BEng MSc(Eng) PhD Stell SMIEEE
A Mishra, BE (REC India) PhD Edinburgh SMIEEE
F Nicolls, MSc(Eng) PhD Cape Town
D O’Hagan, BEng (Hons) MSc Ulster PhD UCL
AJ Wilkinson, BSc(Eng) Cape Town PhD London
Emeritus Associate Professors
JR Greene, MSc(Eng) Cape Town MIEEE
M Malengret, MSc(Eng), PhD Cape Town

Honorary Associate Professor
R Laufer, Dipl.-Ing TU Berlin, Dr.-Ing. Univ. Stuttgart IAA

Senior Lecturers
K Awodele, Reg Eng, BSc(Eng) Ife MSc(Eng) Abu PGDM MNSE MIEEE
MY Abdul Gaffar, BSc(Eng) MSc(Eng) Natal PhD Cape Town
A Murgu, MSc(Eng) Bucharest Ph Lic (Comp Sci) PhD Jyväskylä MIEEE
A Patel, MSc(Eng) PhD Cape Town MIEEE
MS Tsoeu, MSc(Eng) PhD Cape Town MIEEE

Academic Development Senior Lecturer
R Smit, MSc(ScEd) Witwatersrand PhD Cape Town

Honorary Adjunct Senior Lecturer
Froehlich A, LL.MMAS Maître en Droit France, Dr jur Vienna, IISL

Lecturers
J Mwangama, MSc(Eng) PhD Cape Town MIEEE
D Oyedokun, MSc(Eng) PhD Cape Town MIEEE SAIEE
RA Verrinder, MSc(Eng) Cape Town MIEEE
S Winberg, BSc(Hons) Cape Town MSc UTK PhD Cape Town

Senior Scholar
MJE Ventura, PrEng BSc(Maths, Physics) BSc(Eng) Cape Town BSc(Hons) Pret MIEEE MSAIEE

Chief Technical Officers
J Pead, BSc(Eng), MSc(Eng) Cape Town
D De Maar, BEd(Hons) Cape Town

Senior Technical Officers
P Bizimana
P Titus

Technical Officer
B Daniels

Departmental Manager
J Buxey

Finance Officer
C Koonin

Administrative Officer (Undergraduate)
M van der Westhuizen BA PGDip LIS Cape Town

Administrative Assistant (Postgraduate)
N Moodley

Administrator (General)
R Harris
The activities of the Department cover a wide field both at undergraduate and postgraduate level. The Department regards laboratory work as of significant importance and a range of dedicated laboratories exist. These are in the fields of Control and Process Control, Data Communications, Digital Systems and Computers, Electrical Machines and Transformers, Electronics and Telecommunications, Image Processing, Instrumentation, Microwave, Radar, Robotics, Power Electronics and Power Systems.

The undergraduate programmes endeavour to provide the student with an education in Electrical Engineering with a range of specialisations, in Electrical and Computer Engineering and in Mechatronics.

Course Outlines

EEE1000X PRACTICAL TRAINING
0 NQF credits at HEQSF level 5
Convener: Mr D de Maar
Course outline:
This opportunity for practical experience culminates in a certificate showing evidence of completion of suitable work in the basic workshop processes to the satisfaction of the Head of Department, during a period of at least six weeks in an approved workshop, either before registration or during the long vacation following the year of first registration in the faculty (due by 31 March of the following year). Alternatively students may produce a certificate showing evidence of completion of an approved structured intensive practical training course of at least 3 weeks duration.
DP requirements: Not applicable.

EEE1006F INTRODUCTION TO ELECTRONIC ENGINEERING
12 NQF credits at HEQSF level 5
Convener: Dr R Smit
Course outline:
Lecturer: TBA
This course aims to motivate and help students understand the nature and scope of electronic engineering by providing an introduction to the content, methods and modes of thinking. A further aim is to develop students’ confidence in rational problem-solving approaches and to introduce students to the design process. Topics include: Current, Voltage and Power, Resistors, Kirchhoff’s Laws, Resistors used for Sensing, Capacitors, Capacitors as Sensors, Diodes, The Bipolar Junction Transistor (BJT) and BJT circuits, Metal Oxide Semiconductor Field Effect Transistors (MOSFETs), Digital Integrated Circuits, gates, flip flops and counters, Analog Integrated Circuits, operational amplifier and comparator circuits, Mixed Signal Integrated Circuit, the NE555.
Lecture times: Mon, Tues, Wed, Thurs 3rd period
DP requirements: 80% Lab and tutorial attendance; 100 % attendance at all class tests
Assessment: Labs: 5% Tests: 25%, June Examination: 70%
EEE1007S INTRODUCTION TO ELECTRICAL ENGINEERING
12 NQF credits at HEQSF level 5
Convener: Associate Professor S Chowdhury and Dr R Smit
Course outline:
This course aims to motivate and help students understand the basic concepts of power generation, transmission, distribution, nuclear energy and renewable energy, power utilization in common electric appliances and basic principles of electric circuits and networks. A further aim is to develop students' confidence in rational problem-solving approaches, in performing laboratory exercises and to introduce students to the design process. Topics include power generation, transmission, distribution and utilization, DC networks, inductance and capacitance, circuit transients, fundamentals of AC and single phase AC circuits
Lecture times: Mon, Tues, Wed, Thurs, 3rd period
DP requirements: 80% Lab and tutorial attendance; 100% attendance test attendance
Assessment: Design Project: 10%, Lab Test 5%, Tests: 20%, November Examination: 65%

EEE2041F INTRODUCTION TO ELECTRICAL ENGINEERING
For students in the Electro-Mechanical and Mechanical Engineering programmes.
12 NQF credits at HEQSF level 6
Convener: Associate Professor S Chowdhury
Course entry requirements: PHY1013F/S, MAM1021S
Course outline:
The course aims to help students understand: (a) DC Networks including DC circuits, series and parallel connection of resistances and star-delta transformation, voltage and current sources, Kirchhoff’s laws, DC Network theorems (Thevenin, Norton, etc); (b) Fundamentals of AC including generation, concepts of waveform, period, frequency, angular velocity, phase etc., average, peak and RMS values; (c) Single Phase AC Circuit including AC through resistance (R), inductance (L) and capacitance (C), concept of reactance and impedance, phasors, single-phase AC series and parallel circuits, concept of active power, reactive power, apparent power and power factor; (d) Simple Magnetic Circuits including definition of magnetic circuits, simple and composite magnetic circuits, magnetic circuit calculations, magnetic hysteresis, core loss, sinusoidal excitation of magnetic circuits and induced voltage; (e) Single-phase Transformers including core construction, principle of operation, e.m.f. equation and transformation ratio, no-load and on-load operation, phasor diagram under no-load and full-load operation with lagging and leading loads, exact and approximate equivalent circuits, open and short circuit tests, losses and efficiency, voltage regulation. The course will prepare students to apply engineering and scientific knowledge in carrying out analysis, problem solving and design projects.
Lecture times: Mon, Wed, Thurs, Fri, 5th period
DP requirements: (1) 100% Laboratory attendance. (2) 80% tutorial attendance. (3) 50% mark for laboratories.
Assessment: Lab (15%), Project (5%), Class Test (30%), June Examination (60%)

EEE2042S INTRODUCTION TO ELECTRONIC ENGINEERING
For students in the Electro-Mechanical and Mechanical Engineering programmes.
12 NQF credits at HEQSF level 6
Convener: Dr J Mwangama
Course entry requirements: MAM1021F/S, PHY1013F/S, DP for EEE2041F.
Course outline:
The course aims to help students understand the following concepts: (a) Basic semiconductor physics such as charged particles and the Bohr atomic model for silicon. (b) rectifier diodes and special purpose diodes such as zener and LED. The students will acquire an appreciation of how diodes are useful and widespread in electronic circuitry such as power supplies. (c) The students will have a solid grounding in Bipolar Junction Transistors and how these are used in switching and amplifications applications. (d) FETs will similarly be studied and students will learn of their
prevalence in modern electronics. (e) The basics of digital electronics such as logic gates and boolean logic will be developed as part of this course. This material aims to blend with the other course content and so the basics of CMOS logic operations using transistors will be lectured. The course will prepare students to apply engineering and scientific knowledge in carrying out analysis, problem solving and design projects related.

Lecture times: Mon, Wed, Thurs 3rd period

DP requirements: 80% tutorial attendance, 100% lab attendance

Assessment: Coursework (40%), Exam (60%)

EEE2044S
INTRODUCTION TO POWER ENGINEERING
16 NQF credits at HEQSF level 6
Convener: Dr D Oyedokun
Course entry requirements: MAM1020F/S, PHY1013F/S and EEE1007S
Course outline:
This course aims to help students understand the basic concepts to (a) three-phase AC power generation, voltage, current and power calculations, concepts of balanced and unbalanced systems, measurement of active power by two-wattmeter method; concept, (b) definitions and principles of simple and composite magnetic circuits, magnetic hysteresis, (c) basic principles of operation of electric machines, transformer material; (d) basic principles of operation, construction, operating characteristics, modelling and performance analysis of DC generators, DC motors and BLDC motors, (e) single phase transformers. The course will prepare students to apply engineering and scientific knowledge in carrying out analysis, problem solving and design projects.

Lecture times: Mon, Tues, Wed, Fri, 3rd period
DP requirements: 100% Lab attendance
Assessment: Labs (2%), Project (8%), Tests (30%), Exam (60%)

EEE2045F
ANALOGUE ELECTRONICS
16 NQF credits at HEQSF level 6
Convener: Associate Professor D O’Hagan
Course entry requirements: EEE1006F
Course outline:

Lecture times: Mon, Tues, Thurs, 3rd period
DP requirements: Must finish all the lab modules.
Assessment: Assignments / Tests (20%), Lab (15%), Quiz (5%), Exam (60%)
EEE2046F EMBEDDED SYSTEMS I
16 NQF credits at HEQSF level 6
Convener: Ms RA Verrinder
Course entry requirements: (EEE1006F or EEE2042S) and (CSC1015F or CSC1017F)
Course outline:
This course aims to give students a strong foundation in embedded systems by introducing them to
digital system fundamentals, including: information representation, Boolean algebra, logic gate
behaviour, combinational and sequential digital circuits, digital building blocks and algorithmic state
machines; C programming with a focus on microcontroller applications; basic microcontroller
usage, including an introduction to computer architecture, general purpose input/outputs, analogue
to digital convertors and basic timers.
Lecture times: Mon, Tues, Wed, Thurs, 4th period
DP requirements: 100% practical attendance and submission
Assessment: Practicals (15%), Tests (25%), Exam (60%)

EEE2047S SIGNALS AND SYSTEMS I
16 NQF credits at HEQSF level 6
Convener: Associate Professor F Nicolls
Course entry requirements: MAM1021S
Course outline:
This course provides students with the basic tools required for understanding linear systems, and the
effect that such systems have on deterministic signals. Upon completion, students will be able to
characterise and manipulate linear time-invariant systems in terms of input-output relationships,
using both time and frequency domain methods. The course includes concepts related to signal
representation, linear convolution, Fourier analysis, sampling of continuous-time signals, and
Laplace transforms.
Lecture times: Mon, Tues, Wed, Thurs, 4th period
DP requirements: 100% practical and tutorial submission
Assessment: Homework (10%), Labs (10%), Tests (20%), Exam (60%)

EEE2048F PROFESSIONAL COMMUNICATION FOR ELECTRICAL
ENGINEERING
8 NQF credits at HEQSF level 6
Convener: Associate Professor J English
Course entry requirements: None
Course outline:
This course aims to develop an understanding of effective reporting. Students learn the requirements
for written reports and correspondence in terms of planning, organisation and selection of
information. In addition, the students are taught to operate as professionals and to manage social
media and exposure.
Lecture times: Mon, Wed, 2nd period
DP requirements: 80% attendance at all lectures and tutorials. Achieve a minimum average of 50%
for the combined marks of all the class exercises and mid-course test.
Assessment: Classwork comprising exercises, assignments and a mid course test carries 75%
weighting of final mark. Written examination carries 25% weighting of final mark
EEE2049W INTRO TO ELECTRICAL AND ELECTRONIC ENGINEERING:
SCIENCE STUDENTS
24 NQF credits at HEQSF level 6
Convener: Associate Professor S Chowdhury
Course entry requirements: PHY1013F/S, MAM1021F/S
Course outline:
This course aims to prepare Science students majoring in Computer Engineering to apply engineering and scientific knowledge in carrying out analysis, problem solving and design projects. The Electrical Engineering component will cover DC Networks; (b) Fundamentals of AC; (c) Single Phase AC Circuit; (d) Magnetic Circuits; (e) Single-phase Transformers. The students will acquire an understanding of DC circuits and networks, step and sinusoidal excitation of inductive and capacitive circuits, fundamentals of AC quantities and waveforms, phasor diagrams, behaviours of AC through resistance, inductance and capacitance, single phase series and parallel AC circuits, complex power and power factor, magnetic circuits and single phase transformers. The Electronic Engineering component of the course will cover (a) Basic semiconductor physics; (b) rectifier diodes. The students will acquire an appreciation of how diodes are useful and widespread in electronic circuitry such as power supplies; (c) Bipolar Junction Transistors and how these are used in switching and amplifications applications. (d) FETs will similarly be studied and students will learn of their prevalence in modern electronics. The basics of digital electronics such as logic gates boolean logic will be developed. The basics of CMOS logic operations using transistors is also included.
Lecture times: Mon, Wed, Fri, 5th period (1st Semester), Mon, Wed, Thurs, 5th period (2nd Semester)
DP requirements: 1st semester: 100% Laboratory attendance, 80% tutorial attendance, 50% mark for laboratories. 2nd semester: 80% tutorial attendance, 100% lab attendance
Assessment: 1st semester – Lab 5%, Project 5% Class Test, 30% June Exam 60%. 2nd semester - Class Test 20%, Lab 10%, Tutorials and Quizzes 10%, November Exam 60%

EEE2050F EMBEDDED SYSTEMS I FOR SCIENCE STUDENTS
18 NQF credits at HEQSF level 6
Convener: Ms RA Verrinder
Course entry requirements: EEE2042S, CSC1015F
Course outline:
This course aims to give Science students majoring in Computer Engineering a strong foundation in embedded systems by introducing them to digital system fundamentals, including: information representation, Boolean algebra, logic gate behaviour, combinational and sequential digital circuits, digital building blocks and algorithmic state machines; C programming with a focus on microcontroller applications; basic microcontroller usage, including an introduction to computer architecture, general purpose input/outputs, analogue to digital converters and basic timers.
Lecture times: Mon, Tues, Wed, Thurs, 4th period
DP requirements: 100% practical attendance and submission
Assessment: Practicals (15%), Tests (20%), Project (5%), Exam (60%)

EEE3000X PRACTICAL TRAINING
0 NQF credits at HEQSF level 7
Convener: Mr D de Maar
Course outline:
This second opportunity for the student engineer to consolidate through practical experience, culminates in a technical report and certificate showing to the satisfaction of the head of department, evidence of completion of suitable work for a minimum period of six weeks in engineering employment at the end of the third year. The report and certificate is to be submitted by the end of the fourth week of the term immediately following the period of employment. Students who submit
Evidence of having obtained suitable practical experience prior to their registration may be exempted from EEE3000X. The employer must certify that the student completed the work.

DP requirements: Not applicable.

Assessment: Report

EEE3044S ENERGY CONVERSION & UTILISATION

For Electro-Mechanical and Mechanical Engineering students only.

8 NQF credits at HEQSF level 7

Convener: Mrs K. Asodele

Course entry requirements: EEE2031S or EEE2026S or EEE2041F

Course outline:

This course builds on the understanding of AC power theory; three-phase systems, electrical loads and tariffs; DC machines; AC machines, heating and lighting.

Lecture times: Mon, Wed, 4th period. Tutorial: Thurs, 4th period.

DP requirements: 100% Laboratory attendance and submission and 50% mark for laboratories

Assessment: Laboratory & Assignments (12%), Class Tests (28%), November Examination (60%).

EEE3061W MECHATRONICS DESIGN I

For Electro-Mechanical Engineering students only.

12 NQF credits at HEQSF level 7

Convener: Professor E Boje

Course entry requirements: EEE2041F, EEE2042S

Course outline:

This course aims to develop an advanced understanding of mechatronic design. Topics include: top-down and bottom-up design strategies; applications of electromechanical systems, sensors, power electronics, and actuators to mechatronic design. Computing platforms: embedded micro-controllers and programmable logic controllers (PLCs), and case histories in mechatronic design are also covered.

Lecture times: Semester 1: Tues meridian. Semester 2: TBA

DP requirements: Completion of projects

Assessment: Projects (70%), Class Test (30%)

EEE3088F ELECTRICAL ENGINEERING DESIGN PRINCIPLES

8 NQF credits at HEQSF level 7

Convener: Associate Professor A Mishra

Course entry requirements: EEE2045F, EEE2047S

Course outline:

This course aims to equip students with the skills required to undertake engineering design and synthesis at sub-system level. Design methodology and various approaches to procedural design are introduced. Exposure to various simulation tools is provided to ensure that students are able to evaluate first phase designs systematically. Modelling and measurement error analysis are introduced and statistical modelling of engineering designs is emphasized. Optimization using both gradient and soft computing methods is introduced as an invaluable tool in modern, multi-constraint based design and synthesis. The course will include assignments developing from component level to sub-system level problems. These assignments will focus on the skills required for practical engineering design.

Lecture times: Mon 6th, 7th period

DP requirements: Submission of all assignments

Assessment: Assignments (50%); Exam (50%)
EEE3089F ELECTROMAGNETIC ENGINEERING
16 NQF credits at HEQSF level 7
Convener: Associate Professor R Geschke
Course entry requirements: PHY2010S, MAM2083F/S
Course outline:
This course aims to introduce the electrical engineering student to the mechanism of electromagnetic radiation by antennas and the nature of fields produced by antennas. The propagation of plane waves in space and in lossy media is studied and applications are presented. One-dimensional models for TEM transmission lines are constructed. These models are often used as basic elements in design of antennas and other components. Simplification to very short lines such as power lines are discussed. A selection of conventional and modern waveguide structures are considered. Finally, an overview of computational methods for the solution of realistic electromagnetic problems are presented.
Lecture times: Mon, Tue, Wed, Thu 4th period
DP requirements: 100% Completion of laboratory sessions and tutorials; minimum mark of 50% for the assignment
Assessment: Assignment (10%); Tests (30%); Exam (60%)

EEE3090F ELECTRONIC DEVICES & CIRCUITS
16 NQF credits at HEQSF level 7
Convener: Dr MY Abdul Gaffar
Course entry requirements: EEE2045F, EEE2047S
Course outline:
Lecture times: Mon, Tue, Wed, Thu 3rd period
DP requirements: Completion of all laboratory experiments and tutorials
Assessment: 2 hour class test: 30%; 3 hour exam: 50%; Tutorials: 16%; Pracs: 4%

EEE3091F ENERGY CONVERSION
16 NQF credits at HEQSF level 7
Convener: Associate Professor A Khan
Course entry requirements: EEE2044S
Course outline:
This course aims to introduce students to the fundamentals of AC Electrical Machines and Power Electronics. Several machine types are studied, which include: induction, synchronous and other modern AC machines. The features, characteristics and performance of each machine type are studied. Uncontrolled and controlled rectifier circuits are introduced and analysed in detail. DC-DC converters are also be introduced. Topical industrial applications of AC machines and Power Electronics are also discussed.
EEE3092F SIGNALS & SYSTEMS II
16 NQF credits at HEQSF level 7
Convener: Associate Professor AJW Wilkinson
Course entry requirements: EEE2047S, MAM2083F/S
Course outline:
This course aims to develop the understanding of: Random signals and processes in continuous /discrete time, probability distribution/density functions, random signals calculus (mean, variance, moment generation function), transforms of random signals, Bayesian Theorem, covariance and correlation, Central Limit theorem, Gaussian processes, random signals spectrum and bandwidth, power spectral density (PSD), Wiener-Khinchine Theorem, entropy function, estimation/filtering of random signals. Additionally this course aims to develop the understanding of: Time and frequency domain signal processing for electronic systems (carrier-wave radio and instrumentation), continuous-time Fourier theory, sampled signals and use of the discrete Fourier transform, propagation of signals and noise through linear systems, complex analytic signal representation, power calculations using PSD functions, pulse detection using correlation and the matched filter, analog carrier-wave modulation/demodulation, amplitude modulation (double sideband and single sideband; suppressed carrier and large carrier), heterodyning, angle modulation (frequency and phase modulation), signal-to-noise ratio calculations.
Lecture times: Mon, Tue, Wed, Thu 5th period
DP requirements: 100% completion of laboratory assignments and tutorials; minimum of 50% for laboratory assignments
Assessment: Tuts 5%; Labs 10%; Tests 20%; Exam 65%

EEE3093S COMMUNICATION AND NETWORK ENGINEERING
16 NQF credits at HEQSF level 7
Convener: Associate Professor O Falowo
Course entry requirements: EEE2046F
Course outline:
Lecture times: Mon, Tue, Wed, Thu 3rd period
DP requirements: 100% completion of laboratory assignments and tutorials; minimum of 50% for laboratory assignments
EEE3094S CONTROL SYSTEMS ENGINEERING
16 NQF credits at HEQSF level 7
Convener: Dr MS Tsoeu
Course entry requirements: EEE2047S, MAM2084F, EEE2045F
Course outline:
Lecture times: Mon, Tue, Wed, Thu 4th period
DP requirements: 100% Laboratory attendance, completion of all assigned class work
Assessment: 60% November Exam; 20% project; 10% Class Test(s); 10% Assignments/Tutorial Tests

EEE3095S EMBEDDED SYSTEMS II FOR SCIENCE STUDENTS
18 NQF credits at HEQSF level 7
Convener: Dr S Winberg
Course entry requirements: EEE2050F
Course outline:
This course focuses on embedded systems and computer architecture, covering embedded operating systems, theory and practices for the design and analysis of computer architecture and an introduction to Hardware Description Language (HDL) programming. This course builds on Embedded Systems I course. The course is split into two parts. Part 1 (10 credits) concerns the design process, modelling and analysis of embedded systems designs, the structure of an operating systems, cross-compiling toolchains, and relevant related theories. Techniques for execution time analysis, resource control protocols, and methods for modelling and simulation of computer systems are studied. Practicals concern using and embedded operating system, cross-compiling applications, and using a single board computer embedded platform. Part 2 (6 credits) introduces HDL programming and techniques and tools for developing gateware and simulating designs. A mini-project (Project A) is performed which involves implementing a state machine and performing thorough analysis of its design and performance. A significant computer system design project (Project B) that counts 2 credits is to be completed by computer science students.
Lecture times: Mon, Tue, Wed, Thu 5th period
DP requirements: Completion of all practical assignments as well as both projects. Minimum 50% for the weighted sum of practicals and project marks.
Assessment: Practical (14%); ProjectA (10%); ProjectB (11%); Tests (15%); Exam (50%)

EEE3096S EMBEDDED SYSTEMS II
16 NQF credits at HEQSF level 7
Convener: Dr S Winberg
Course entry requirements: EEE2046F
Course outline:
This course focuses on embedded systems and computer architecture, covering embedded operating systems, theory and practices for the design and analysis of computer architecture and an introduction to Hardware Description Language (HDL) programming. This course builds on Embedded Systems I course. The course is split into two parts. Part 1 (10 credits) concerns the design process, modelling and analysis of embedded systems designs, the structure of an operating systems, cross-compiling toolchains, and relevant related theories. Techniques for execution time
analysis, resource control protocols, and methods for modelling and simulation of computer systems are studied. Practicals concern using and embedded operating system, cross-compiling applications, and using a single board computer embedded platform. Part 2 (6 credits) introduces HDL programming and techniques and tools for developing gateware and simulating designs. A mini-project is performed which involves implementing a state machine and performing thorough analysis of its design and performance.

Lecture times: Mon, Tue, Wed, Thu 5th period

DP requirements: Completion of all practical assignments and project. Minimum 50% for the weighted sum of practicals and project marks.

Assessment: Practical (20%); Project (10%); Tests (20%); Exam (50%)

EEE3097S ENGINEERING DESIGN: ELECTRICAL AND COMPUTER ENGINEERING
8 NQF credits at HEQSF level 7
Convener: TBC
Course entry requirements: EEE2045F, EEE2047S
Course outline:
In this course students will be assigned a design problem relevant to the Electrical & Computer Engineering discipline within which they will need to design a prototype and test a sub-system. This will provide insight to understand the intricacies of real-life complex sub system design. Students will be expected to solve a methodically using the skills they have gathered over the previous semesters of the curriculum, especially from the Design Principles course.

Lecture times: No lectures, project work only

DP requirements: 80% participation in all components of the course

Assessment: Continuous assessment: this will be assessed based on two to three well-defined deliverables over the semester) (50%); Demonstration and report on the design process and choices (50%).

EEE3098S ENGINEERING DESIGN: ELECTRICAL ENGINEERING
8 NQF credits at HEQSF level 7
Convener: Dr D Oyedokun
Course entry requirements: EEE2045F, EEE2047S
Course outline:
In this course students will be assigned a design problem relevant to the Electrical Engineering discipline within which they will need to design a prototype and test a sub-system. This will provide insight to understand the intricacies of real-life complex sub system design. Students will be expected to solve a methodically using the skills they have gathered over the previous semesters of the curriculum, especially from the Design Principles course.

Lecture times: No lectures, project work only.

DP requirements: 80% participation in all components of the course

Assessment: Continuous assessment: this will be assessed based on two to three well-defined deliverables over the semester) (50%); Demonstration and report on the design process and choices (50%).

EEE3099S ENGINEERING DESIGN: MECHATRONICS
8 NQF credits at HEQSF level 7
Convener: TBC
Course entry requirements: EEE2045F, EEE2047S
Course outline:
In this course students will be assigned a design problem relevant to the Mechatronics discipline within which they will need to design a prototype and test a sub-system. This will provide insight to understand the intricacies of real-life complex sub system design. Students will be expected to solve
a methodically using the skills they have gathered over the previous semesters of the curriculum, especially from the Design Principles course.

Lecture times: No lectures, project work only

DP requirements: 80% participation in all components of the course

Assessment: Continuous assessment: this will be assessed based on two to three well-defined deliverables over the semester (50%); Demonstration and report on the design process and choices (50%).

EEE3100S POWER SYSTEMS ENGINEERING

16 NQF credits at HEQSF level 7

Convener: Mrs K Awodele

Course entry requirements: EEE2044S

Course outline:
This course aims to develop further skills and knowledge in power systems engineering, power systems network models, per-unit, load flow and balanced fault calculations, transformers, protection principles, electrical loads and tariffs and electricity market

Lecture times: Mon, Tue, Wed, Thu 5th period

DP requirements: 100% completion of laboratory assignments and tutorials. Obtain 50% mark for laboratories

Assessment: Practicals (6 %); Assignment /Site visit (6 %); Tests (28%); Exam (60%)

EEE4006C PROFESSIONAL COMMUNICATION STUDIES

For Electrical Engineering, Electrical and Computer Engineering and Mechatronics students.

8 NQF credits at HEQSF level 8

Convener: Associate Professor J English

Course entry requirements: EEE3073S or EEE2048F

Co-requisites: EEE4051C

Course outline:
This advanced course in professional communication aims to develop an understanding of: professional writing including business proposals, graphic communication, CVs, posters, readability, and group presentations using PowerPoint, to an audience drawn from industry.

Lecture times: Tues 4th & 5th period

DP requirements: (1) 80% attendance (2) 100% hand-in of assignment (3) Satisfactory demonstration of required components of ELO 6 and 10

Assessment: Tutorials & Group Work (6%), Projects (50%), Class Test (4%), Presentation Examination (40%).

EEE4022S RESEARCH PROJECT

This course is also available in the first semester as EEE4022F

40 NQF credits at HEQSF level 8

Convener: 1st semester: Dr D Oyedokun. 2nd semester: Associate Professor D O’Hagan

Course entry requirements: All 1st, 2nd, 3rd year core courses and specific, individual, requirements depending on the topic selected. A maximum of 32 credits of coursework can be taken at the same time as the final year project.

Course outline:
The final year project is an important opportunity, at the end of the degree programme, to tackle a real engineering project that involves the creative application of scientific principles to the solution of problems in society. The student is expected to work on the project both individually and under the guidance of a supervisor. The project involves: a problem description or research hypothesis developed in consultation with a supervisor; reviewing the topic in detail and defining the boundaries (scope) carefully, to confirm an understanding of the requirements of the project; searching for, and critically engaging the relevant literature, selecting and justifying the most appropriate approaches to solving the problem or testing the hypothesis; analysis, simulation,
designing, building, integrating and testing as appropriate, hardware and software; evaluating the project against the success criteria and design objectives; writing a report about the project, the findings, and any recommendations. An oral presentation and the preparation of an exhibit of the project is also required.

DP requirements: Meetings with supervisor to discuss progress towards satisfying all the Exit Level Outcomes. Oral presentation and Open Day exhibition of project. Timeous hand-in of final project.

Assessment: Oral (10%), Project Report (90%)
EEE4086F MICROWAVE ENGINEERING
16 NQF credits at HEQSF level 8
Convener: Associate Professor R Geschke
Course entry requirements: Prerequisites: All 2nd Year core courses, 72 credits of 3rd Year core courses.
Course outline: This course focuses on aspects related to systems operating at RF (radio frequency), microwave and millimetre wave frequencies, such as communication systems, radar systems and radio-astronomy receivers. It includes antennas and antenna array theory, propagation in space and urban environments and the variations at different frequencies, high frequency measurement techniques and accuracy of measurements, origin of non-linearity in systems and a functional overview of typical components used in these systems. A selection of Radar, Radio Astronomy and Communications systems architecture are studied in detail. System design principles and practical computational EM (electromagnetic) modelling are an integrated part of the course.
DP requirements: Submission of practical assignment and satisfactory attendance of practicals
Assessment: Class test (20%), Practical assignments (30%), June Examination (50%).

EEE4087F MOBILE BROADBAND NETWORKS
20 NQF credits at HEQSF level 8
Convener: Associate Professor O Falowo
Course entry requirements: EEE3055W or EEE3063F; EEE3085S, EE3083F, EEE3084W, EEE3086F or EEE3093S or equivalent.
Course outline: This advanced course aims to develop an understanding of mobile broadband networks and includes selected topics in (1) wireless and fixed access networks (16 lectures), (2) broadband networks (16 lectures), and (3) networks and services management (16 lectures).

Wireless and Fixed Access Networks: Lecturer: Associate Professor O Falowo

Broadband Networks: Lecturer: Dr J Mwangama

Networks and Services Management: Lecturer: Dr A Murgu
Mathematical Analysis, Computer Simulations and Markov Analysis, Networks on Queues, Traffic Characterisation for Broadband Services, QoS; Service Platforms, AAA, VoIP, API (Parlay, JAIN); Next Generation Networks; Multiservice platforms, Soft-switch, Data Plane Technology, Multiplexing, Routing, MPLS, Routing and Traffic Engineering with MPLS, L2/L3/L4, switching; Control Plane Technology, Signalling, Call Set Up and Connection Control (SS7, H.323, SIP, MGCP); Applications: Telephony, Packet voice, Streaming.
Lecture times: Mon, Tues, Thurs, 3rd periods
DP requirements: 1) 100% Tutorial submission and lab attendance. 2) Pass ECSA ELO evaluations in the projects. 3) 50% Lab Mark.
Assessment: Tutorials, Laboratory and Projects (35%), Class Test (15%), June Examination (50%).

EEE4088F COMMUNICATION ENGINEERING
16 NQF credits at HEQSF level 8; Practical exercises and tutorials as required, and design projects.
Convener: Associate Professor M Dlodlo
Course entry requirements: EEE3086F or EEE3084W or equivalent.
Course outline:
The course aims to enhance an understanding of and competence in analysing and possibly designing contemporary digital communication systems, and to extend the study of principles of communication engineering towards current topics including selections from: Elements of information theory, error-control coding, random processes and spectral analysis, sources, source coding and baseband signalling, bandpass modulation and demodulation/detection, synchronisation, resource allocation, communication link analysis, and examples of system design.
Lecture times: Mon 5th; Wed, Thurs, Fri, 2nd period
DP requirements: Minimum 40% class marks in completion of coursework
Assessment: Semester mark (40%), June Examination (60%).

EEE4089F POWER DISTRIBUTION & TRANSMISSION NETWORKS
20 NQF credits at HEQSF level 8
Convener: Professor K Folly
Course entry requirements: EEE3057S or EEE3100S, EEE3091F
Course outline:
This course aims to develop an advanced understanding of power distribution and transmission networks. Topics include: transmission and distribution, electrical loads and load forecasting, overhead lines and cables, substations, distributed generation, smart grids, power system protection, high voltage engineering, and power system reliability and power quality, electrification, delivery process and pricing.
Lecture times: Wed 3rd & 4th; Thurs & Fri 4th periods
DP requirements: 1) 100% Laboratory attendance and submission. 2) At least 50% mark for laboratories. 3) Pass ECSA ELO 1 & 2 evaluations, 4) 100% attendance of site visits
Assessment: Laboratory Assignments (10%), Project and Site Visits (10%), Class Tests (20%), June Examination (60%).

EEE4090F POWER SYSTEMS ANALYSIS, OPERATION & CONTROL
20 NQF credits at HEQSF level 8
Convener: Professor K A Folly
Course entry requirements: EEE3057S or EEE3100S, EEE3091F
Course outline:
This course aims to develop an advanced understanding of power systems analysis, operation and control. Topics include: Load flow studies, fault calculation, power system operations, power system stability and control, grid connections of distributed generator (DG), high voltage DC transmissions systems and electricity market.
Lecture times: Monday, 2nd & 8th period; Tuesday, 1st & 3rd period
DP requirements: 1) Satisfactory completion of coursework 2) 100% Laboratory attendance and submissions 3) 50% mark for laboratories.
Assessment: Projects (16%), Class Test (24%), June Examination (60%).

EEE4093F PROCESS CONTROL & INSTRUMENTATION
20 NQF credits at HEQSF level 8
Convener: Dr MS Tseou
Course entry requirements: EEE3069W or EEE3094S or equivalent
Course outline:
This course aims to provide an integrated view of the principles and practice of modern industrial control and its applications. Topics include: measurement of physical variables, industrial transducers, integration of programmable logic controllers (PLCs), supervisory control and data acquisition (SCADA) systems and management information systems (MIS), signal transmission and conditioning, microcontrollers, computer interfacing, realtime multitasking in computer control, nonlinear and advanced control methods.

Lecture times: Mon 6th, Wed 6th, Fri 6th and 7th period.

DP requirements: 1) 100% Laboratory attendance and submission. 2) Completion of all assigned class work 3) Pass ECSA ELO 1 & 2 evaluations.

Assessment: Project (20%), Assignments & Class Tests (20%), June Examination (60%)

EEE4099F ELECTRICAL MACHINES & POWER ELECTRONICS
20 NQF credits at HEQSF level 8
Convener: Associate Professor M A Khan
Course entry requirements: EEE3031S or EEE3057S or equivalent.
Course outline:
This course aims to develop an advanced understanding of electrical machines and power electronics. Topics include: Switching and conduction losses of power semi-conductor devices. Uncontrolled and controlled naturally commutated/converters. DC to DC converters, unipolar and bipolar pulse width modulated schemes. Space vector modulation, half-bridge and full-bridge configurations for single and three phase converters. The analytical models of DC and AC machines are analysed and methods of achieving speed control are discussed. The characteristics of each machine under variable speed operation are studied. Modern four-quadrant DC and AC Drive topologies are discussed together with their control objectives and performance. Topics on specialised electrical machines are also presented.

Lecture times: Mon 3rd & 4th; Thurs & Fri 5th

DP requirements: 1) 100% Laboratory attendance and submission. 2) 50% mark for laboratories

Assessment: Project (5%), Class Tests (35%), June Examination (60%).

EEE4104C ELECTRICAL MACHINES & DRIVES
10 NQF credits at HEQSF level 8
Convener: Associate Professor MA Khan
Course entry requirements: EEE3069W, EEE3031S, EEE3057S or EEE3091F, EEE3094S
Course outline:
This course provides an introduction to reference frame theory; dq-machine modelling; field orientated control of a permanent magnet synchronous motor and induction motor; and an introduction to single-phase induction motors.

Lecture times: Mon,Tues, Thurs, Fri, 2nd periods

DP requirements: No requirements

Assessment: Tutorial (5%), Projects (10%), Class Tests (25%), September Examination (60%).

EEE4105C RF & MICROWAVE DEVICES & CIRCUITS
10 NQF credits at HEQSF level 8
Convener: Emeritus Professor B J Downing
Course entry requirements: All 1st, 2nd and 3rd year core courses in EB009, or EB011 or EB022
Course outline:
This course covers the revision of transmission line theory, microstrip coaxial and waveguide circuits, Gunn diode oscillators, IMPATT oscillators and GaAs MESFET oscillators, low noise and power GaAs MESFET amplifiers, PIN diode switches and limiters, and microwave receivers and mixers.

Lecture times: Mon, Tue, Wed 6th, 7th period

DP requirements: 30% for year mark.
Assessment: Year mark (30%), September Examination (70%).

EEE4113F ENGINEERING SYSTEM DESIGN
16 NQF credits at HEQSF level 8
Convener: Associate Professor AK Mishra
Course entry requirements: In the 4th academic year of study (AYOS4)
Course outline:
This course aims to consolidate prior material in the context of professional project and design work. Students working individually as well as in groups will tackle a design assignment, leading to submission of a technical report. Topics include: Various models for the stages of formal design methodologies, divergent and convergent thinking, South African industrial design case studies, context analysis (STEEPLE), idea generation, creative methods to organize thinking and planning, user requirements and specifications, project clarification and scope, design standards and codes, systems engineering approach, detail aspects and checklists related to concept, embodiment and final designs, redundancy in systems, worst-case design, sensitivity analysis and cost and project life-time estimation as well as design-thinking applied to final-year projects.
Lecture times: Mon, Tue, 3rd, 4th, 5th period
DP requirements: Pass ELO’s 3 and 8 (team work)
Assessment: Design Project, 50% Final Examination 50%

EEE4114F DIGITAL SIGNAL PROCESSING
16 NQF credits at HEQSF level 8
Convener: Associate Professor F Nicolls
Course entry requirements: EEE3086F or EEE3069W; EEE3092F or EEE3094S; or equivalent
Course outline:
This course aims to develop an advanced understanding of digital signal processing. Topics include: discrete time signals and systems; the discrete fourier transform properties and fast algorithms; the z-transform; frequency response from z-plane; FIR and IIR filter design and structures for digital filters. The course includes a specialist component in an applied or advanced signal processing application area.
Lecture times: Mon, Wed, 6th, 7th period
DP requirements: None
Assessment: Project and assignments (20%), class test (20%), June examination (60%)